
VC20 Programming Tutorial Basics I

 Vision
Components
The Smart Camera People

ColorLib Documentation
Color library for VC cameras Version 2.0

Revision 1.1 01 February 2005
Document name: Color_Lib.pdf
© Vision Components GmbH Ettlingen, Germany

© 1996-2004 Vision Components GmbH Ettlingen, Germany Prog_Tut.pdf

Foreword and Disclaimer

This documentation has been prepared with most possible care. However Vision Components GmbH
does not take any liability for possible errors. In the interest of progress, Vision Components GmbH
reserves the right to perform technical changes without further notice.

Please notify support@vision-components.com if you become aware of any errors in this manual or if
a certain topic requires more detailed documentation.

This manual is intended for information of Vision Component’s only. Any publication of this document
or parts thereof requires written permission by Vision Components GmbH.

Icons used in this manual

The Light bulb highlights hints and ideas that may be helpful for a development.

!

This warning sign alerts of possible pitfalls to avoid. Please pay careful attention to
sections marked with this sign.

References:

Description Titel on Website Download Area

Installation Manual for VC20XX
cameras

 InstallVC20XX VC40XX (1.36 MB) Customer Area Getting Started

VC20XX and VC40XX Cameras

Demo programs and sample
code used in the manual

 Tutorial_Code (14.5 Kbytes) Customer Area Getting Started

VC20XX and VC40XX Cameras

VCRT Operation System
Functions Manual

 VCRT 5.0 Software Manual
(992.31 Kbytes)

Registered User Area Software

documentation VC Smart Cameras

VCLIB 2.0 Image Processing
Library Manual

 VCLIB 2.0 Software Manual
(275.42 Kbytes)

Registered User Area Software

documentation VC Smart Cameras

VCLIB 3.0 Image Processing
Library Manual

 VCLIB 3.0 Software Manual
(539.67 Kbytes)

Registered User Area Software

documentation VC Smart Cameras

© 1996-2005 Michael Engel, Vision Components GmbH Ettlingen, Germany

© 2005 Vision Components, Ettlingen, Germany

mailto:support@vision-components.com
http://www.vision-components.com/component/option,com_docman/task,view_category/Itemid,36/subcat,29/catid,119/limitstart,0/limit,40/index.php?option=com_docman&task=docclick&Itemid=36&bid=84&limitstart=0&limit=40
http://www.vision-components.com/component/option,com_docman/Itemid,36/task,view_category/catid,119/order,dmname/ascdesc,ASC/
http://www.vision-components.com/component/option,com_docman/task,view_category/Itemid,36/subcat,29/catid,119/limitstart,0/limit,40/index.php?option=com_docman&task=docclick&Itemid=36&bid=80&limitstart=0&limit=40
http://www.vision-components.com/component/option,com_docman/Itemid,36/task,view_category/catid,119/order,dmname/ascdesc,ASC/
http://www.vision-components.com/component/option,com_docman/task,view_category/Itemid,36/subcat,14/catid,82/limitstart,0/limit,40/index.php?option=com_docman&task=docclick&Itemid=36&bid=32&limitstart=0&limit=40
http://www.vision-components.com/component/option,com_docman/Itemid,36/task,view_category/catid,82/order,dmname/ascdesc,ASC/
http://www.vision-components.com/component/option,com_docman/task,view_category/Itemid,36/subcat,14/catid,82/limitstart,0/limit,40/index.php?option=com_docman&task=docclick&Itemid=36&bid=26&limitstart=0&limit=40
http://www.vision-components.com/component/option,com_docman/Itemid,36/task,view_category/catid,82/order,dmname/ascdesc,ASC/
http://www.vision-components.com/component/option,com_docman/task,view_category/Itemid,36/subcat,14/catid,82/limitstart,0/limit,40/index.php?option=com_docman&task=docclick&Itemid=36&bid=157&limitstart=0&limit=40
http://www.vision-components.com/component/option,com_docman/Itemid,36/task,view_category/catid,82/order,dmname/ascdesc,ASC/

Table of Contents

The Smart Camera People I

1 Installation 4

2 Compatibility issues 5

3 Display modes 7

4 Important image processing data structures 8

5 Additional Shell Commands for Color Cameras 10

6 Macros 12

7 Sample image variables 13

8 Programs for processing color images 15

Appendix A: List of library functions 36

INDEX 38

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 4

1 Installation

The color library is part of the VCLIB package including VCLIB.LIB, VCLIB.H, FLIB.LIB and
FLIB.H. If you have already installed VCLIB, no further installation is required. If not, please refer to
the installation guide for VCLIB. The color library does however require a separate software
licence. A valid licence for VCLIB is also required.

It is necessary to call the functions init_licence() and init_vclib() in this order before
programs of the color library can be executed. Both functions require a registration code, which may
be part of the delivery or can be obtained from our support team.

It is also possible that you have purchased a licence for a particular camera model. In this case the
library will not operate on other camera models. Contact our sales department for registration for other
camera models.

If you have the software for evaluation but not a purchased licence, the registration code is only valid
for a particular serial number of the camera. Please make sure to include the correct licence codes if
you purchase the product later on.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 5

2 Compatibility issues

With the new color library, the image variable structs had to be modified. A type field was added, to
distinguish between the existing grey value images and the various color image formats. Since color
images in the various formats generally have three components instead of only one, two fields
(ccmp1, ccmp2) were added as start address for the additional color components.

VCLIB 2.0 and 3.0 image variable struct:

typedef struct
 {
 long st; /* start address */
 int dx; /* horizontal width */
 int dy; /* vertical width */
 int pitch; /* memory pitch */
 } image;

VCLIB 3.01 image variable struct:

typedef struct
 {
 U8 *st; /* start address */
 U32 type; /* type of image */
 I32 dx; /* horizontal width */
 I32 dy; /* vertical width */
 I32 pitch; /* memory pitch */
 U8 *ccmp1; /* color component 1 */
 U8 *ccmp2; /* color component 2 */
 } image;

The choice of the new fields and their location within the new image variable struct are compatible with
the previous image variable struct of VCLIB 2.0 and 3.0. Since a field of type long requires 64 bits,
the 32 leading bits being zero for 32 bit memory addresses, the old convention will always result in the
type field of the new convention being set to zero.

Compatibility means, that existing projects do not need to be changed at all. Projects making use of
the new color functions must use the new convention only for the files where color processing
takes place.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 6

The following shows how to switch between the two conventions:

Typical project file for VCLIB 2.0 and 3.0 convention:

#include <register.h>
#include <vcrt.h>
#include <vclib.h>
#include <stdlib.h>
#include <sysvar.h>
#include <macros.h>

. . .

Typical project file for VCLIB 3.01 convention:

#define NEW_IMAGE_VAR

#include <register.h>
#include <vcrt.h>
#include <vclib.h>
#include <stdlib.h>
#include <sysvar.h>
#include <macros.h>

. . .

NEW_IMAGE_VAR is used in the header files <vclib.h> and <macros.h>, so please make sure to
place the definition before the inclusion of the headers.

The following table gives an overview of the various possibilities

Existing project, no color functions No change necessary
Existing project, some color
functions need to be added

No change necessary for the files accessing grey images.
Files including color processing must have NEW_IMAGE_VAR
defined

Programmer prefers to convert all
grey image routines to the new
convention

All writes to the struct members x->st must be changed from
(long) to (U8 *), x->type must be set to 0

New project We recommend using the new struct for all files
(NEW_IMAGE_VAR must be defined)

New project with color functions NEW_IMAGE_VAR must be defined in all files using color
functions. In all other files this is recommended, but not
necessary.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 7

3 Display modes

In contrast to “normal” black-and-white cameras, VC color cameras feature various display modes.
These display modes are useful to view images stored in the different color image types.

mode Definition description
0 DISP_IDLE no display update, no overhead
1 DISP_GREY display of grey images, like black-and-white camera
2 DISP_RGB display of RGB images, image variable type = IMAGE_RGB
3 DISP_BAYER display of Bayer pattern images, image variable type = IMAGE_BAYER
4 DISP_BAYERGREY display of Bayer pattern images, image variable type = IMAGE_BAYER,

image is shown as grey image
5 DISP_YCBCR display of YCbCr images, image variable type = IMAGE_CBCR444

The system variable COLOR_MODE is used to change the display modes. With the system variable
DISP_PERIOD, the update rate of the display in units of the vertical retrace period can be selected.
For color cameras, it is recommended to use somewhat higher values for this variable, resulting in a
lower refresh rate, since the refresh of the display must be calculated by the CPU.
Depending on the selected display mode, this may consume a considerable share of CPU time.
It may therefore be desirable to switch the display update off, when maximum CPU time is required for
the user program. This may be accomplished by setting either COLOR_MODE or DISP_ACTIVE to zero.

The current camera models store the Bayer pattern from the CCD sensor for image ackquisition.

This is an example of a Bayer pattern. The individual pixels of the CCD
are stored as red (R), green (G) or blue (B) pixel values
Due to the complicated sructure of the array, an interpolation is necessary The current camera models
store the Bayer pattern from the CCD sensor for image ackquisition.

 R G R G R
G B G B G
R G R G R
G B G B G
R G R G R

The storage of a Bayer pattern image requires no more memory than that of a black-and-white image
with the same dimensions. It is, however, not very convenient for image processing.
It is therefore recommended, to convert the Bayer pattern image into a different color image type. We
suggest using the YCbCr 4:4:4 format, but other formats like RGB or ISH (HIS) will do as well.
YCbCr or RGB can be viewed directly on the screen (COLOR_MODE = DISP_YCBCR or DISP_RGB).
If live display is required, the user may wish to view the original Bayer pattern memory using
COLOR_MODE = DISP_BAYER or DISP_BAYERGREY

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 8

4 Important image processing data structures

Gray-scale images / color images

Images and image windows are described by means of so-called image variables, which are
described in detail below.
Gray-scale and color images are described using the following image struct:

typedef struct
 {
 U8 *st; /* start address */
 U32 type; /* type of image */
 I32 dx; /* horizontal width */
 I32 dy; /* vertical width */
 I32 pitch; /* memory pitch */
 U8 *ccmp1; /* color component 1 */
 U8 *ccmp2; /* color component 2 */
 } image;

Here, st is the start address of the video memory area, type is one of the following image types, dx
and dy are the dimensions of the area of interest in horizontal and vertical direction.

The value pitch is the vertical spacing, i.e. the difference of the address of two vertically adjacent
pixels.

ccmp1 and ccmp2 are the start addresses of the additional color components. The following table
gives an overview of the various image types and color components.

value definition image type memory

requirement
st ccmp1 ccmp2

0 IMAGE_GREY grey-scale image U8 dy * pitch grey --- ---

1 IMAGE_BAYER Bayer pattern dy * pitch bayer --- ---

2 IMAGE_RGB color image RGB 3 * dy * pitch red green blue
3 IMAGE_CBCR444 color image YCbCr

4:4:4
3 * dy * pitch y u v

4 IMAGE_CBCR411 color image YCbCr
4:1:1

3/2* dy * pitch y u v

5 IMAGE_YUVNORM normalized YcbCr 4:4:4 3 * dy * pitch y u* v*
6 IMAGE_IHS color image IHS (HSI) 3 * dy * pitch i h s

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 9

y

x Y, I or R

vertical
difference
between
adjacent
pixels = PITCH

st

y

x Cb, H or G

vertical
difference
between
adjacent
pixels = PITCH

ccmp1

y

x Cr, S or B

vertical
difference
between
adjacent
pixels = PITCH

ccmp2

For a grey scale image, the upper left pixel is stored at address st. Going 1 to the right (x-direction), 1
must be added to this address. Going down (y-direction), pitch must be added. For a color image,
two additional memory blocks are needed to store the color information. It makes sense to store these
2 blocks tightly behind the first block and behind each other, but this is not guaranteed. For instance,
consider the case when the image variable describes a subframe of another frame. In this case,
additional pointers are necessary (ccmp1 and ccmp2)

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 10

5 Additional Shell Commands for Color Cameras

The shell contains the following additional internal commands:

wb white balance wb
disp change display mode disp [<option>]

wb white balance

synopsis wb

description The command wb performs a white balance for color cameras. It is not

available for black-and-white cameras and all cameras with the serial number
of a black-and-white camera but have a color head as a special option.

Procedure:

1. The user enters wb
2. The shell responds with:

Please place white object inside yellow frame
and select a brightness between 100 and 180
Press any key for start and end

3. The camera enters the interactive mode and displays the average grey

value of the region inside the yellow overlay frame.
4. Place a white or grey (colorless) object (e.g. a piece of paper) under the

camera covering the complete area inside the yellow overlay frame
5. Adjust brightness (iris of the lens, illumination) so that the average

brightness displayed is between the limits (100 and 180). If the values are
higher, the values for RGB might be saturated. If the values are lower, the
white balance might be inaccurate.

6. If step 5 is not possible, hit a key to exit the interactive mode. Change the
shutter setting with the sh – command and repeat steps 1-5.

7. Press any key to exit the interactive mode. The white balance values are
calculated, output on the console, stored as system variables (RED,
GREEN, BLUE) and the input color lookup table is programmed.

8. If you type vd after the shell’s $-promt to get a live image, you will notice
that the tint of the image has changed.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 11

disp change display mode

synopsis disp [<option> <number>]

description The command disp changes the display mode. There are several options,

some of which are not available for black-and-white cameras:

 -c change color mode (color only)
 -g change gamma correction
 -p change display period

 option –c:

This option changes the color mode for the display. Images can be displayed
in a variety of color formats including grey value output (black-and-white) and
YUV format (YCbCr)

0 IDLE
1 GREY
2 RGB
3 BAYER
4 BAYERGREY
5 YCBCR

example disp -c 5 change to YCbCr display

 option –g:

This option allows to set the gamma correction for the display. Display
monitors normally have a non-linear, mostly logarithmic transfer function.
You can enter 100 times gamma with this command.

example disp -g 100 change gamma to 1 (default is 0.6)

option –p:

This option changes the refresh rate (DISP_PERIOD) of the display. Display
refresh adds a certain overhead, which slows down the processing power of
the CPU. For black-and-white cameras, this overhead is mostly negligible,
since only memory transfers are involved, the CPU running at full speed. For
color cameras, however, the CPU must calculate the color conversion, which
is quite time consuming. A color conversion may take up to 60 milliseconds
depending on color mode and DSP type and speed grade. The refresh rate is
defined in units of the vertical retrace time which is typically 14 milliseconds
for an SVGA display. This command also changes the system variable
DISP_PERIOD.

example disp -p 10 change refresh rate to 140 milliseconds

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 12

6 Macros

The file macros.h contains macros that are useful for working with the library. It is not necessary to
use these macros, but it may turn out to be convenient.
The following types of macros are available:

• definition of bits, bytes, words, pages
• aliases for video modi
• conversion macros
• image variable macros
• screen macros
• overlay macros
• utility macros

Some macros (screen macros) use conventions for physical and logical addresses. There is, again, no
obligation to use these conventions and the according macros.

When using the macros for color image variables, NEW_IMAGE_VAR must be defined before macros.h
is included.

assignment of a whole image variable in just one statement
#define ImageAssign(a,newst,newdx,newdy,newpitch)
{
(a)->st=(U8 *)(newst);
(a)->type=0;
(a)->dx=(I32)(newdx);
(a)->dy=(I32)(newdy);
(a)->pitch=(I32)(newpitch);
(a)->ccmp1=(U8 *)0;
(a)->ccmp2=(U8 *)0;
}

In comparison to the previous definition, the 3 new members of the new image variable are assigned a
value of 0. This corresponds to an image variable definition of a grey (black-and-white) image. This
means, invovation of this macro gives the same results as the previous version, but it was written
using the new convention.

#define ImageAssignC(a,newst,newtype,newdx,newdy,newpitch,

newccmp1,newccmp2)
{
(a)->st=(U8 *)(newst);
(a)->type=(newtype);
(a)->dx=(I32)(newdx);
(a)->dy=(I32)(newdy);
(a)->pitch=(I32)(newpitch);
(a)->ccmp1=(U8 *)(newccmp1);
(a)->ccmp2=(U8 *)(newccmp2);
}
This is a new macro for assigning color image variables. The new members type, ccmp1 and
ccmp2 can be assigned with this macro.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 13

7 Sample image variables

1. The pattern of a part is to be stored in a gray image with the size 256(h) x 128(v).

#define NEW_IMAGE_VAR
#include <vclib.h>
#include <macros.h>

main()
{
image a = {(U8 *)0, /* start address */
 0, /* type = 0: IMAGE_GREY */
 256, /* dx */
 128, /* dy */
 256, /* pitch */
 (U8 *)0, /* ccmp1 */
 (U8 *)0, /* ccmp2 */

ImageAssign(&a, getvar(CAPT_START), 256, 128, 256)
a.st = (long)(getvar(CAPT_START)); /* assign start of image */
 /* to address of capture */
 /* memory buffer */

...

Selecting 256 for pitch produces a tight version of the image in memory, without gaps. This is not
always the case. When pictures are taken, the resulting image sometimes contains gaps, meaning
that pitch is greater than dx. However, pitch may never be smaller than dx.

2. A full frame (a) is assumed to have a size of 640(h) x 480(v) with a pitch of 640. Two partial images
(b, c) with a size of 128(h) x 128(v) are to be defined in this full frame. The partial images will later be
used to evaluate the image.

#define NEW_IMAGE_VAR
#include <vclib.h>
#include <macros.h>

main()
{
image a, b, c;

ImageAssign(&a, getvar(CAPT_START), 640, 480, getvar(VPITCH));
ImageAssign(&b, a.st+100*getvar(VPITCH)+200, 128, 128, getvar(VPITCH));
ImageAssign(&c, a.st+200*getvar(VPITCH)+300, 128, 128, getvar(VPITCH));

. . .

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 14

The upper left corner of the image window b is located at position (200,100) of the full frame a. The
upper left corner of the image window c is located at position (300,200).

If it is desired, for example to set the contents of the image variable c to the constant value 255
(white), this can be done with the following function call:

set(&c,255);

3. Same as 2. but for a color image variable of type IMAGE_CBCR444. The addresses for the 2
additional components (chrominance components) need to be calculated in this example. In this case,
this is done by calling the function ImageAllocate() which allocates memory for this particular type
of image variable and assigns the proper values to the image variable. This is a difference to the
previous example, since example 2 doesn’t allocate memory, it just uses the memory already
allocated for capture purposes.

#define NEW_IMAGE_VAR
#include <vclib.h>
#include <macros.h>

main()
{
image a, b, c;

ImageAllocate(&a, IMAGE_CBCR444, 640, 480);
a.pitch = getvar(VPITCH));

ImageAssignC (&b, IMAGE_CBCR444,

a.st+100*getvar(VPITCH)+200, 128, 128, getvar(VPITCH),
a.ccmp1+100*getvar(VPITCH)+200,
a.ccmp2+100*getvar(VPITCH)+200);

ImageAssignC(&c, IMAGE_CBCR444,

a.st+200*getvar(VPITCH)+300, 128, 128, getvar(VPITCH),
a.ccmp1+200*getvar(VPITCH)+300,
a.ccmp2+200*getvar(VPITCH)+300);

. . .

As in the previous example, the upper left corner of the image window b is located at position
(200,100) of the full frame a. The upper left corner of the image window c is located at position
(300,200).

If it is desired, for example to set the contents of the color image variable c to the constant value 128
(medium grey, no color), this can be done with the following function call:

cset(&c,128, 0, 0);

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 15

8 Programs for processing color images

init_licence initialize licence code
init_vclib initialize color library

ImageAllocate memory allocation for an image variable
ImageFree release memory for an image variable

cset set color image variable to a constant value
copy copy an image variable
fwrite_image write bitmap image to file
fread_image read bitmap image from file

ColorBar color bar test chart
ColorGraph color graph test chart

WhiteBalanceValues calculate white balance values
init_color_lut initialize color input LUT
init_color_table initialize color software lookup-table
clut_bayer bayer color lookuptable operation
init_LUT_gamma init image output LUT using gamma correction

BayerToGrey Bayer Pattern to Grey conversion
BayerToRGB Bayer Pattern to RGB conversion
BayerToYCbCr Bayer Pattern to YCbCr conversion
RGB_YCbCr RGB to YCbCr color conversion
YCbCr_RGB YCbCr to RGB color conversion
YCbCr_NORM YCbCr to normalized YCbCr conversion
NORM_YCbCr normalized YCbCr to YCbCr conversion
RGB_IHS RGB to IHS (HSI) color conversion

color_histo color histogram of a color image variable
display_chisto display color histogram
color_classify color classification

standard error returns

Most of the functions return a standard error code:

#define ERR_NONE 0 /* no error */
#define ERR_FORMAT -1 /* image format error */
#define ERR_TYPE -2 /* image type error */
#define ERR_MEMORY -3 /* out of memory */
#define ERR_LICENCE -5 /* licence required */
#define ERR_OPEN -19 /* open error */
#define ERR_MODEL -51 /* model does not fit licence */

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 16

init_licence initialize licence code

synopsis I32 init_licence (char *code)

description This function initializes the VCLIB and other special VC Libraries.
 This function must be called prior to using any VCLIB functions or other

special library functions.
 !

The function returns 0 on proper initialization, negative numbers on error.

possible error codes:

ERR_LICENCE /* licence required */
ERR_OPEN /* open error */
ERR_MODEL /* model does not fit licence */

example init_licence(”T1122334455”) /*initializing a full VCRT/

VCLIB Licence for VC cameras with Texas Instrument DSP*/

init_licence(”C1122334455”) /*initializing a full Color
LIB licence for VC cameras with Texas Instrument DSP*/

memory none

explanation Vision Components continues to offer special libraries to their customers. For

simpler handling and ensured compatibility all libraries are now included in
one setup package – for instance: TI-VCRT523_VCLIB300_Setup.exe

 In order to use any VCLIB, ColorLIB or other special VC Library functions,

each library requires initialization prior to using its functions.

 The VCLIB Licence code is displayed on the delivery docket and user CD

shipped with the delivery of the VC SDK-T1.
 Licence codes for other special libraries as the ColorLIB are also issued on

delivery notes or emailed. Please contact sales@vision-comp.com for a quote
on development software and special libraries from Vision Components.

licence types The following licence types are currently available / under preparation:

 T Full Licence for programming all VC cameras with TI DSP
 M Full Licence of the M200 Data Matrix Code Reader Library
 C Full Licence of the ColorLib
 E Full Licence of the Extension Lib
 L Loan Licence valid for 3 month only (in combination with T,L,C or E)
 P Licence restricted to VC4018 smart cameras (in c. .with T,L,C or E)
 Q Licence restricted to VC4038 smart cameras (in c. .with T,L,C or E)

1 Vision Components Software Devellopment Kit for Smart Cameras with Texas Instrument DSP,
containing the TI C-cross compiler and VCRT and VCIB Libraries from Vision Components.

© 2005 Vision Components, Ettlingen, Germany

mailto:sales@vision-comp.com

Color_Lib.pdf - Color library for VC cameras Version 2.0 17

ImageAllocate memory allocation for an image variable

synopsis U8 *ImageAllocate(image *img, U32 type, U32 dx, U32 dy)

description This function allocates memory for an image and sets the image variable
struct components to the appropriate values.

 type is the image type, dx and dy are the horizontal and vertical dimensions

of the image. The function allocates memory for a tight storage, i.e.
img->pitch is set to dx.

value type image type memory
requirement

st ccmp1 ccmp2

0 IMAGE_GREY grey-scale image U8 dx * dy grey --- ---

1 IMAGE_BAYER Bayer pattern dx * dy bayer --- ---

2 IMAGE_RGB color image RGB 3 * dx * dy red green blue
3 IMAGE_CBCR444 color image YCbCr 4:4:4 3 * dx * dy y u v
4 IMAGE_CBCR411 color image YCbCr 4:1:1 3/2 * dx * dy y u v
5 IMAGE_YUVNORM normalized YCbCr 4:4:4 3 * dx * dy y u* v*
6 IMAGE_IHS color image IHS (HSI) 3 * dx * dy i h s

The function returns the start address of the memory block allocated. If out of
memory, the NULL pointer is returned.

memory see table

see also ImageFree()

ImageFree release memory for an image variable

synopsis void ImageFree(image *img)

description This function frees the memory for an image previously allocated with
ImageAllocate().

memory none

see also ImageAllocate()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 18

cset set color image variable to a constant value

synopsis I32 cset(image *rgb, I32 x, I32 y, I32 z)

description The function cset() sets all pixels of a color image variable to the constant

values x (first color component), y (second color component) and z (third color
component).

 The function may be used for the following color image types:

 IMAGE_RGB x: red, y: green, z: blue
 IMAGE_CBCR444 x: Y, y: cb, z: cr
 IMAGE_CBCR411 x: Y, y: cb, z: cr
 IMAGE_IHS x: i, y: h, z: s

The function returns the standard error code.

memory none

see also set()

copy copy an image variable

synopsis I32 copy(image *src, image *dst)

description The function copy copies the contents of the image variable src to dst.

 If the format of the image variable (dx, dy) is not identical, the format of the

result variable dst is used. In particular, this means that the result of the
operation is not defined if the image format of src is smaller than that of dst.

 (src->dx < dst->dx or src->dy < dst->dy)

 You are recommended to work with identical image formats, i.e.
 src->dx = dst->dx and src->dy=dst->dy

It is possible to copy the contents of color images with this function. In this
case, the copy is performed only, if src and dst belong to the same storage
classes, i.e. require the same amount of memory. I.e. a copy from type =
IMAGE_RGB to IMAGE_IHS is allowed, whereas a copy from IMAGE_GREY to
IMAGE_RGB is not allowed. It is recommended to use images of the same type
for src and dst.

The function returns the standard error code.

memory none

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 19

fwrite_image write image variable as bit map file (BMP)

synopsis I32 fwrite_image (char *path, image *img)

description This function writes the image defined by image variable img as a bit map file

(BMP) to the file specified by path.

Currently, the only image type supported is IMAGE_RGB. Images are stored in
24 bit true-color mode.

The function returns the standard error code.

memory none

see also fread_image()

fread_image read a bit map file (BMP) and write to image variable

synopsis I32 fread_image (char *path, image *img)

description This function reads the bit map image (BMP) from the file specified by path
and stores it in image variable img.

Currently, the only image type supported is IMAGE_RGB. BMP images must
be stored in 24 bit true-color mode.

If the BMP image is larger than the image variable, the image size is truncated
to the size of the image variable.

memory none

see also fwrite_image()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 20

ColorBar color bar test chart

synopsis I32 ColorBar (image *rgb, U32 amplitude, U32 saturation)

description This function creates a color bar test chart with vertical bars of white, yellow,
cyan, green, magenta, red, blue, black colors(from left to right).

 amplitude and saturation specify the values for the color bar amplitude
and saturation. Allowed values range from 0 (zero amplitude, saturation) to
255 (maximum amplitude, saturation). The following tables may be helpful:

100% amplitude, 100% saturation
amplitude = 255, saturation = 255

 white yellow cyan green magenta red blue black
R 255 255 0 0 255 255 0 0
G 255 255 255 255 0 0 0 0
B 255 0 255 0 255 0 255 0
Y 255 226 179 150 105 76 29 0

Cb 128 0 171 44 212 85 255 128
Cr 128 149 0 21 235 255 107 128

75% amplitude, 75% saturation
amplitude = 191, saturation = 191

 white yellow cyan green magenta red blue black
R 191 191 47 47 191 191 47 47
G 191 191 191 191 47 47 47 47
B 191 47 191 47 191 47 191 47
Y 191 175 148 132 107 90 63 47

Cb 128 56 152 80 176 104 200 128
Cr 128 140 56 68 188 200 116 128

The image variable rgb may currently be of type IMAGE_RGB or
IMAGE_CBCR444.

The function returns the standard error code.

see also ColorGraph()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 21

ColorGraph color graph test chart

synopsis I32 ColorGraph (image *dst, I32 y, I32 sat,

I32 mode, float start_color)

description This function creates a color graph test chart showing all colors with constant
luminance y and constant saturation sat.

 The colors are stored in the image described by image variable dst.
 They can be stored horizontally (i.e. different colors moving from left to right,

but constant colors moving vertically) or vertically depending on the value of
the parameter mode. A start color can be defined by start_color ranging
from 0 to 2π.

 Allowed values for y , sat range from 0 (zero amplitude, saturation) to 255
(maximum amplitude, saturation).

The image variable rgb may currently be of type IMAGE_RGB,
IMAGE_CBCR444 or IMAGE_YUVNORM

The function returns the standard error code.

see also ColorBar()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 22

WhiteBalanceValues calculate white balance values

synopsis I32 WhiteBalanceValues (image *bayer,

I32 *red, I32 *green, I32 *blue)

description This function performs the calculation of the white balance values for red,
green and blue.

bayer should be an image variable of type IMAGE_RGB. Red, green and
blue are pointers for the storage of the white balance correction values
calculated by the function.

bayer.st must point to a red pixel, i.e. there must be an even number of
pixels in horizontal and vertical direction between the start of the captured
image and the bayer.st.

The return value of the function is the maximum of the average intensities for
the red green and blue pixels.

Before the function is executed, the input lookup-table must be set to equal
amplification for the 3 channels, for example with the statement:

init_color_lut(1024, 1024, 1024);

A white or grey reference image must be presented to the camera for the
pixels specified by the image variable bayer .

The result of this function is only reliable, if the pixel intensity is within a
specific range. For this reason, the function outputs the maximum average
red/green/blue intensities. This value should be in the range of [100..180].
If the value is less than 100, the image might be too noisy and the resolution
will suffer. If the value is higher than 180, some of the pixel might be
saturated, which will result in an incorrect white balance.

memory none

see also init_color_lut()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 23

init_color_lut initialize color input LUT

synopsis void init_color_lut (I32 red, I32 green, I32 blue)

description This function programs the hardware input color lookup-table to a linear
mapping between input and output.
The mappings for the red, green and blue channels can be programmed to a
different slope, which is a useful feature for adjusting the whitebalance of the
camera.

Slope values for red, green and blue can be used to amplify each channel
(value > 1024) or attenuate the channel (value < 1024). A value of 1024 will
result in an identity transform.

9 bits are used for the input of the LUT, 8 bits for the output, so there is
enough head-room for some amplification.

For the whitebalance adjustment, we recommend to leave the channel with
the maximum intensity at the identity transform, the other two channels should
be amplified by appropriate factors.

The possible range for red, greeen and blue is [0.. 32768] equivalent to
amplification factors between 0 and 32.

side effects The function changes the values of the system variables RED, GREEN and

BLUE.

memory none

see also WhiteBalanceValues(), init_color_table()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 24

init_color_table initialize color software lookup-table

synopsis I32 init_color_table (U32 red,

U32 green, U32 blue, U8 table[])

description This function programs a software color lookup-table to a linear mapping
between input and output.
The mappings for the red, green and blue channels can be programmed to a
different slope, which is a useful feature for adjusting the whitebalance of the
camera.

Slope values for red, green and blue can be used to amplify each channel
(value > 1024) or attenuate the channel (value < 1024). A value of 1024 will
result in an identity transform.

8 bits are used for the input of the LUT, 8 bits for the output.

This function may be used for whitebalance adjustment for all cameras without
hardware input LUT.

For the whitebalance adjustment, we recommend to leave the channel with
the maximum intensity at the identity transform, the other two channels should
be amplified by appropriate factors.

The possible range for red, greeen and blue is [0.. 32768] equivalent to
amplification factors between 0 and 32.

side effects The function changes the values of the system variables RED, GREEN and
BLUE.

memory none

see also WhiteBalanceValues(), init_color_lut(), clut_bayer()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 25

clut_bayer bayer color lookuptable operation

synopsis I32 clut_bayer (image *bayer1, image *bayer2, U8 table[])

description This function performs a bayer color lookuptable operation for all cameras
without hardware input LUT.

bayer1 is the image variable for the source image, bayer2 for the
destination image. Both images must be of type = IMAGE_BAYER. The
image variable bayer1 should start with a red pixel.
table[1024] is the lookup-table which contains the mapping of the input
pixels to the output pixels. table[] consists of 4 independent LUTs with 256
values each for R1, G1, G2 and B2 in this sequence.

 R1 G1 R1 G1 R1

G2 B2 G2 B2 G2
R1 G1 R1 G1 R1
G2 B2 G2 B2 G2
R1 G1 R1 G1 R1

The output of this function is a bayer pattern with the same organization as the
input image with an individual mapping of red, green and blue pixels.

table may be the a linear mapping table calculated with
init_color_table(), e.g. for a whitebalance operation

The function returns the standard error code.

see also init_color_lut()

init_LUT_gamma init image output LUT using gamma correction

synopsis void init_LUT_gamma(float gamma)

description This function programs the image output lookuptable (output LUT) for black-

and-white / color display using gamma correction.

 Gamma correction is a non-linear function used in order to
 compensate for display monitor non-linearities.

 The following formula is applied:

 X’ = X ^ gamma , where X may be any of R,G,B

 Higher values for gamma tend to increase contrast while at the

same time low grey values (dark areas) may not be distinguishable.
Lower values decrease contrast and dark areas may be better differentiated.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 26

The standard value for gamma is 0.45 (according to various video standards).
We recommend a value of 0.6 .
Of course, the best value depends on the chosen monitor and its
settings (like brightness and contrast) and may be found using some
experimentation.

see also init_LUT()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 27

BayerToGrey Bayer Pattern to Grey conversion

synopsis I32 BayerToGrey (image *bayer, image *grey)

description This function converts Bayer pattern images (type = IMAGE_BAYER) to grey

images (type = IMAGE_GREY).

bayer specifies the image variable for the input Bayer pattern image, grey
for the resulting output image.

The routine uses a 5x5 filter mask for maximum resolution for the resulting
grey value image.

The following simple formula is applied to convert rgb-values to grey:

y = r + 2*g + b

This means that the resulting grey value is not absolutely physiologically
correct. For Machine Vision, however, it is a good choice.

The function returns the standard error code.

see also BayerToRGB(), BayerToYCbCr()

BayerToRGB Bayer Pattern to RGB conversion

synopsis I32 BayerToRGB (image *bayer, image *rgb)

description This function converts Bayer pattern images (type = IMAGE_BAYER) to

RGB type images (type = IMAGE_RGB).

bayer specifies the image variable for the input Bayer pattern image, rgb
for the resulting output image.

The routine uses a 5x5 filter mask for maximum resolution for the resulting
grey value image.

The function returns the standard error code.

see also BayerToGrey(), BayerToYCbCr()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 28

BayerToYCbCr Bayer Pattern to YCbCr conversion

synopsis I32 BayerToYCbCr (image *bayer, image *ycbcr)

description This function converts Bayer pattern images (type = IMAGE_BAYER) to

YCbCr type images (type = IMAGE_CBCR444).

bayer specifies the image variable for the input Bayer pattern image, ycbcr
for the resulting output image.

The routine uses a 5x5 filter mask for maximum resolution for the resulting
grey value image.
We strongly recommend using this particular function instead of using
BayerToRGB() since the YcbCr format is compatible with most of the VCLIB
functions for grey value images.

The function returns the standard error code.

see also BayerToGrey(),BayerToRGB()

RGB_YCbCr RGB to YCbCr color conversion

synopsis I32 RGB_YCbCr (image *rgb, image *ycbcr)

description This function converts RGB images to YCbCr images using the following
formula:

Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128
Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128

rgb specifies the image variable for the input RGB image, ycbcr for the
resulting YCbCr output image. All results are rounded properly using 4/5
rounding.

The function returns the standard error code.

The image variable rgb must be of type IMAGE_RGB, ycbcr must be of type
IMAGE_CBCR444. The function may be called in-place, i.e. with the same
image variable pointer for rgb and ycbcr. In this case, the image variable
must be of type IMAGE_CBCR444.

see also YCbCr_RGB()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 29

YCbCr_RGB YCbCr to RGB color conversion

synopsis I32 YCbCr_RGB (image *ycbcr, image *rgb)

description This function converts YCbCr images to RGB images using the following
formula:

R = Y + 1.40200 * (Cr – 128)
G = Y - 0.34414 * (Cb – 128) - 0.71414 * (Cr – 128)
B = Y + 1.77200 * (Cb – 128)

ycbcr specifies the image variable for the input YCbCr image, rgb for the
resulting RGB output image. All results are rounded properly using 4/5
rounding.

The function returns the standard error code.

The image variable ycbcr must be of type IMAGE_CBCR444, rgb must be of
type IMAGE_RGB. The function may be called in-place, i.e. with the same
image variable pointer for ycbcr and rgb. In this case, the image variable
must be of type IMAGE_CBCR444.

see also RGB_YCbCr()

YCbCr_NORM YCbCr to normalized YCbCr color conversion

synopsis I32 YCbCr_NORM (image *ycbcr, image *ynbnr)

description This function converts YCbCr images to normalized YCbCr images using the
following formula:

Nb = CB*(Cb – 128) / Y + 29
Nr = CR*(Cr – 128) / Y + 76

with:

CB = 51.56620
CR = 106.86900

The function operates on the color components only, i.e. it leaves the Y
component unchanged.

ycbcr specifies the image variable for the input YCbCr image, ynbnr for the
resulting normalized YCbCr output image. All results are rounded properly
using 4/5 rounding.

The function returns the standard error code.

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 30

The image variable ycbcr must be of type IMAGE_CBCR444, ynbnr must be
of type IMAGE_YUVNORM. The function may be called in-place, i.e. with the
same image variable pointer for ycbcr and ynbnr. In this case, the image
variable must be of type IMAGE_YUVNORM.

see also NORM_YCbCr()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 31

NORM_YCbCr normalized YCbCr to YCbCr color conversion

synopsis I32 NORM_YCbCr (image * ynbnr, image *ycbcr)

description This function converts normalized YCbCr images to YCbCr images using the
following formula:

Nb = XB*(Nb – 29) * Y + 128
Nr = XR*(Nr – 76) * Y + 128

with:

XB = 0.019317
XR = 0.009357

The function operates on the color components only, i.e. it leaves the Y
component unchanged.

ynbnr specifies the image variable for the input normalized YCbCr image,
ycbcr for the resulting YCbCr output image. All results are rounded properly
using 4/5 rounding.

The function returns the standard error code.

The image variable ycbcr must be of type IMAGE_CBCR444, ynbnr must be
of type IMAGE_YUVNORM. The function may be called in-place, i.e. with the
same image variable pointer for ycbcr and ynbnr. In this case, the image
variable must be of type IMAGE_CBCR444.

see also YCbCr_NORM()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 32

RGB_IHS RGB to IHS (HSI) color conversion

synopsis I32 RGB_IHS (image *rgb, image *ihs)

description This function converts RGB images to IHS using the following formula:

define:
MIN = min(R, G, B)
MAX = max(R, G, B)
DELTA = MAX - MIN

then:
I = (R + 2*G + B)/4
S = (I - MIN)/I

R == max: H = (85*(G-B)) / (2*DELTA); (1)
G == max: H = 85 + (85*(B-R)) / (2*DELTA); (2)
B == max: H = 170 + (85*(R-G)) / (2*DELTA); (3)

(1) /* -42.5 to 42.5 between yellow & magenta */
(2) /* 42.5 to 127.5 between cyan & yellow */
(3) /* 127.5 to 212.5 between magenta & cyan */

rgb specifies the image variable for the input RGB image, ihs for the
resulting IHS output image.
The function returns the standard error code.

The image variable ycbcr must be of type IMAGE_CBCR444, rgb must be of
type IMAGE_RGB. The function may be called in-place, i.e. with the same
image variable pointer for ycbcr and rgb. In this case, the image variable
must be of type IMAGE_CBCR444.

see also RGB_YCbCr()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 33

color_histo color histogram of a color image variable

synopsis I32 color_histo (image *img, U32 hist[65536])

description The function histo calculates the color histogram of the color mage variable

img. Supported image types are:

IMAGE_CBCR444
IMAGE_YUVNORM
IMAGE_IHS

 The color histogram is calculated for the color components of the image only.
I.e. the luminance signal for YcbCr and YUVnorm and the Intensity for the HIS
color model are not considered for the calculation.

The histogram is the absolute frequency of the 65536 different colors (different
hue, different saturation) in an image/image window.

 In addition to the color image variable img, a pointer to the histogram array
with 65536 values is passed to the function. After calling the function, the
result can be taken from this array.

Since hist[] is a two-dimensional array of 256x256 values, it is important
to know, how to address it properly:

Histvalue = hist[v*256 + u])

So, the u-component (Cb, H) is stored as first index, the v-component (Cr, S)
as second index.

The function returns the standard error code.

memory none

see also display_chisto()

display_chisto display color histogram

synopsis I32 display_chisto (image *map, U32 hist[65536])

description The function display_chisto generates a two-dimensional plot of the hist

array.
The image described by the image variable map must have at least 256x256
pixels since the plot will produce exactly 256x256 pixels.
The type of the image variable map may be

IMAGE_GREY
IMAGE_RGB
IMAGE_CBCR444

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 34

The function displays the the first component of the histogram (Cb, u, H) in the
horizontal direction, the second components (Cr, v, S) is displayed vertically.
If the result image map is a color image type, the display is done with the color
of the corresponding original image color, but with a constant saturation.

The function returns the standard error code.

memory none

see also color_histo()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 35

color_classify color classification

synopsis I32 color_classify (image *src, image *dst, U8 table[])

description color_classify performs a color classification of a color image variable.
 The following types are allowed for the source image variable src:

IMAGE_CBCR444
IMAGE_YUVNORM
IMAGE_IHS

 The function works on the color components (Cb, Cr / HS) of the image

variable only. The luminance (Y / I) is not considered for this operation

 For each individual pixel, the color components act as a two-dimensional

index to the classification array table[] and the table value is output for the
destination image dst.

 dst must be an image of type IMAGE_GREY

 table[] is an array with 256x256=65536 values.

The function returns the standard error code.

example Assume that we have a color image of type IMAGE_CBCR444. Assume further

that we want to select all exactly colorless pixels, i.e. Cb=Cr=0.
 Since Cr and Cb are stored with offset 128, set

 table[128][128] = 1
 table[u][v] = 0 for u,v != 128

 The destination image will have value 1 for all absolutely colorless pixels with

Cb=128, Cr=128. All other pixels will have value 0.

see also color_histo()

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 36

Appendix A: List of library functions

Color library functions

Name Type Description

I32 init_licence(char *code) C initialize licence code

U8 *ImageAllocate (image *img, C memory allocation for an

U32 type, U32 dx, U32 dy) image variable

void ImageFree (image *img) C release memory for an image variable

I32 cset (image *rgb, I32 x, I32 y, I32 z) C set color image variable to a

constant value
I32 copy (image *src, image *dst) C copy an image variable

I32 fwrite_image(char *path, image *img) C write image variable as a

bit map file (BMP)

I32 fread_image(char *path, image *img) C read a bit map file (BMP) and

write to image variable

I32 ColorBar(image *rgb, U32 y, U32 sat) C color bar test chart

I32 ColorGraph(image *dst, I32 y, C color graph test chart
 I32 sat, I32 mode, float start_color)

I32 WhiteBalanceValues(image *bayer, C calculate white balance values

 I32 *red, I32 *green, I32 *blue)

void init_color_lut(I32 red, C initialize color input LUT

I32 green, I32 blue)

I32 init_color_table(U32 red, C initialize color software lookup-table

U32 green, U32 blue, U8 table[])

I32 clut_bayer(image *bayer1, C bayer color lookuptable operation

image *bayer2, U8 table[])

void init_LUT_gamma (float gamma) C output LUT gamma correction

I32 BayerToGrey(image *bayer, C Bayer Pattern to Grey conversion

image *grey)

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - Color library for VC cameras Version 2.0 37

Name Type Description

I32 BayerToRGB(image *bayer, image *rgb) C Bayer Pattern to RGB conversion

I32 BayerToYCbCr(image *bayer, C Bayer Pattern to YCbCr conversion

image *ycbcr)

I32 RGB_YCbCr(image *rgb, image *ycbcr) C RGB to YCbCr color conversion

I32 YCbCr_RGB(image *ycbcr, image *rgb) C YCbCr to RGB color conversion

I32 YCbCr_NORM(image *ycbcr, C YCbCr to normalized YCbCr color

image *ynbnr) conversion

I32 NORM_YCbCr(image * ynbnr, C normalized YCbCr to YCbCr color

image *ycbcr) conversion

I32 RGB_IHS(image *rgb, image *ihs) C RGB to IHS (HSI) color conversion

I32 color_histo(image *img, U32 hist[]) C color histogram of a

color image variable

I32 display_chisto(image *map, C display color histogram

U32 hist[])

I32 color_classify(image *src, C color classification

image *dst, U8 table[])

Legend: A: Assembly function C: C function M: Macro

© 2005 Vision Components, Ettlingen, Germany

Color_Lib.pdf - 38

INDEX

B
BayerToGrey 15, 27
BayerToRGB 15, 27
BayerToYCbCr 15, 28

C
clut_bayer 15, 25
color images 15
color_classify 15, 35
color_histo 15, 33
ColorBar 15, 20
ColorGraph 15, 21
Compatibility issues 5
copy 15, 18
cset 14, 15, 18

D
data structures 8
disp 10, 11
Display modes 7
display_chisto 15, 33

E
ERR_FORMAT 15
ERR_LICENCE 15, 16
ERR_MEMORY 15
ERR_NONE 15
ERR_TYPE 15
error code 15

F
fread_image 15, 19
fwrite_image 15, 19

G
Gray-scale images 8

I
image variable struct 5

ImageAllocate 14, 15, 17
ImageAssign 12
ImageAssignC 12, 14
ImageFree 15, 17
init_color_lut 15, 23
init_color_table 15, 24
init_licence 15, 16
init_LUT_gamma 15, 25
Installation 4

M
macros 12
macros.h 12

N
NEW_IMAGE_VAR 6, 12
nit_vclib 15
NORM_YCbCr 15, 31

R
registration code 4
RGB_IHS 15, 32
RGB_YCbCr 15, 28

S
Shell Commands 10
standard error returns 15

T
type field 5

W
wb 10
WhiteBalanceValues 15, 22

Y
YCbCr_NORM 15, 29
YCbCr_RGB 15, 29

© 2005 Vision Components, Ettlingen, Germany

	The Smart Camera People
	Installation
	Compatibility issues
	Display modes
	Important image processing data structures
	Additional Shell Commands for Color Cameras
	Macros
	Sample image variables
	Programs for processing color images
	Appendix A: List of library functions
	INDEX

